Diversion charge controller for off grid systems
Since april 2016, we are running a project for creating the open source design of a diversion charge controller for Wind Turbine installation. This project started with a kickstarter project which leaded to the outcome of a first prototype with circuit, component map and a installation manual available on this page. It is also possible to apply for receiving one or some PCB of the existing analogic prototype.
Click here if you want to download the regulator manual
and the Kicad files of the circuit
For more information, please contact the coordinator
Why use a charge controller ?
In a classic installation of small wind turbine, the charge controller is directly connected to the electrodes of the batteries which constitute the DC-bus and it has two roles :
So, the controller “watches” the battery voltage until it reaches a certain voltage (called topping or absorption voltage). When it happens, the regulator starts sending some current to the dump load. As the battery is increasingly being charged, the current in the resistor increase, and so the current sent to the battery decrease. This way, its voltage remains constant.
You want to participate ? Here are different approach on how to improve the existing regulator :
If you have any question, remarks about the design, if you want to report a malfunction or share your improvements on the device, please consult the forum or contact the coordinator.
Regulator for grid tied system
Hugh Piggott original generators are designed in 12 V, 24 V and 48 V for battery systems and until 350 V for grid connection. But recently inverters for grid connection with DC voltage range of 60 V to 80 V made possible the use of the 48 V generator for grid connected systems, achieving the lowest cost for systems up to 700 W. During normal operation, grid-tied inverters are able to control the DC bus voltage and be programed to extract the optimal current, tracking the maximum power point of the turbine. Although, it can loose it’s synchronization due to voltage dips, abnormal grid frequency or disconnection of the grid. During these situations the wind turbine turns freely, in high speeds that can damage the turbine, and generates high voltages that can be harmful for the inverter. Dump load controllers are designed in order to ensure a safe operation of the wind turbine and prevent the over voltages in the inverter. By connecting a Dump Load on the DC side, the turbine’s speed is limited as well as it’s generated voltage.
It is possible to find many commercial dump load controllers in the range of 350 V, but there is a lack in the range of 80 V. That’s why a regulator for the installation of this kind of installation has been designed.
You can download the Kicad files of the circuit and an explicative document on this regulator.
If you want to help on the design of this regulator, have a question or a remark please contact the coordinator
Powered by BetterDocs
Your email address will not be published. Required fields are marked *
Comment
Name*
Email*
Website
Save my name, email, and website in this browser for the next time I comment.